Final States in MicroBooNE

Jennet Dickinson July 12, 2012

Final State Tables

- Sam Zeller showed final state tables for Nuance MC events at last week's cross section meeting
- Have duplicated Sam's tables for Genie MC events generated using BNB flux in LArSoft
- Genie events had POT = 7.67×10^{20} normalize to 6×10^{20} POT
- Genie events were generated in MicroBooNE active volume (122.466 metric tons) normalize to 70 metric ton fiducial volume

Final State Tables for Genie Events

Experimental	Event Rate
Signature	(no energy cut)
1 μ + 0 p + 0 π	1,502
1μ+1ρ+0π	42,192
1 μ + ≥2 p + 0 π	26,330
$1 \mu + 0 p + 1 \pi$	4,865
$1 \mu + 1 p + 1 \pi$	15,782
1 μ + ≥2 p + 1 π	13,079
1 μ + 0 p + ≥2 π	547
1 μ + 1 p + ≥2 π	1,769
other	44,025
total	150,090

- My event rates for final states in Genie
- These events may include any number of neutrons or de-excitation photons
- Normalized to 6x10²⁰ POT and 70 metric ton fiducial volume

Final State Tables with no energy cut, compare to Nuance

Experimental Signature	Event Rate (Nuance)	Event Rate (Genie)
1 μ + 0 p + 0 π	5	1,502
$1 \mu + 1 p + 0 \pi$	15,158	42,192
1 μ + ≥2 p + 0 π	44,283	26,330
$1 \mu + 0 p + 1 \pi$	915	4,865
$1 \mu + 1 p + 1 \pi$	3,993	15,782
1 μ + ≥2 p + 1 π	14,159	13,079
1 μ + 0 p + ≥2 π	320	547
1 μ + 1 p + ≥2 π	1,556	1,769
other	36,892	44,025
total	117,281	150,090

- Compare to Nuance event rates (from Sam Zeller's talk last week, doc db# 2055)
- Again, may include any number of neutrons or de-excitation photons
- 70 metric ton fiducial volume, 6x10²⁰ POT

Final State Tables for Genie events (with energy cut)

- Energy cut require proton(s) to have KE
 ≥50MeV
- These events include 0 pions, and any number of neutrons and de-excitation photons

Experimental Signature	Event Rate (no energy cut)	Event Rate (50MeV proton KE cut)
1 μ + 0 p	1,502	24,724
1 μ + 1 p	42,192	35,914
1 μ ≥ 2 p	26,330	9,386

Final State Tables with energy cut, compare to Nuance

- Energy cut: proton KE ≥50MeV
- 0 pions, and any number of neutrons and de-excitation photons

Experimental Signature	Event Rate (Nuance)	Event Rate (Genie)
1 μ + 0 p	12,791	24,724
1 μ + 1 p	21,006	35,914
1 μ + 2 p	14,680	6,198
1 μ + 3 p	7,191	2,003
1 μ + ≥4 p	3,779	1,185

Cross Section Parameters

- Sam's Nuance events use MiniBooNE xsec parameters
- Genie events use xsec parameters of the Genie version that is included in LArSoft (don't yet know exactly what these are)

Proton energy distribution

Also normalized to 6x10²⁰ POT and 70t fiducial volume

Muon energy distribution

• Also normalized to 6x10²⁰ POT and 70t fiducial volume

Coming soon ...

Looking at v_e signal and background final states

- Sorting MC events into a different set of samples looking at primary and secondary particles (all final states)
 - Muon samples: 1 μ , ≥2 μ
 - Electron samples: 1 e, ≥2 e
 - Photon samples: 1 γ, 2 γ, ≥3 γ
- Interested in backgrounds from 1 γ sample and 1 e sample